THE DESIGN OF BITUMINOUS MIXTURES WITH
CURVED MOHR ENVELOPES

NORMAN W. McLEOD?

INTRODUCTION

This paper outlines the results of some further study that has
been undertaken since the presentation on this same general topic
was made at last year's meeting (1).

First of all, the principles of design for the stability of bitu-
minous mixtures with straight Mohr envelopes will be briefly
reviewed. A somewhat different method for the design of bitu-
minous mixtures with curved Mohr envelopes than that outlined
a year ago will then be described. This newer approach is being
presented partly because it is basically different in several
respects, and partly because of certain limitations that have been
found for the method described at the last annual meeting.
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Fig, 1, Diagram of Shear Planes Under a Loaded Area.

The scope of the problem considered in this paper is illus-
trated by Figure 1. The problem consists of designing bituminous
paving mixtures to have sufficient stability to resist being
squeezed out between the loaded tire and the base course. The
subgrade and base course are assumed to have sufficient strength
to support any wheel load that may be applied to the bituminous
surface. The further assumption is made that the paving mixtures

1 Engineering Consultant, Department of Transport, Ottawa,
Canada.
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have been properly designed in every other respect, such as
density, workability, asphalt content, durability, etc.

The precise nature of the problem of the stability of bitumin-
ous pavements is illustrated in Figure 2. The curve representing
the distribution of tire pressure across the transverse axis of
the contact area of a pneumatic tire resting on a pavement is
shown in Figure 2(a) (2,3).* It is quite clear that the stability
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Fig. 2. Diagram Illustrating the Nature of the Stability Problem
for Bituminous Paving Mixtures,

developed by the bituminous pavement at all points under the con-
tact area must be at least equal to the tire pressure being applied
to each of these points. In Figure 2(b), three possible stability
curves just meeting this requirement are shown. It is an axiom of
mechanics that a material will fail if the applied load exceeds its
ultimate strength. Therefore, if the stability curve for the pave-
ment should cut through the tire pressure curve, Figure 2, there

~ *¥Gee references.
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will be a tendency for pavement failure to occur at all points on
the contact area for which the stability curve is below the pres-
sure curve. Consequently, the critical stability curve is the one
that is just tangent to the tire pressure curve, Figure 2(b).

Three possible critical stability curves of negative (1), zero
(2), and positive (3) slope are shown in Figure 2(b). Stability
curve (1) indicates that the stability of the pavement is lowest at
the edge of the contact area, and increases toward the centre.
For stability curve (2), pavement stability is constant from the
edge toward the centre of the area loaded by the tire, while for
stability curve (3) pavement stability is highest at the edge and
decreases toward the centre of the contact area. It will be shown
later that for the tire pressure curve illustrated by Figure 2(a),
pavement stability appears in general to be represented by sta-
bility curve (1); that is, the stability of the pavement increases
from the edge toward the centre of the contact area. Further-
more, the stability curve is not a straight line as illustrated in
Figure 2(b), but is ordinarily concave upward.

The fundamental problem considered in this paper, and illus-
trated by Figure 2, is the development of a method of design for
any bituminous pavement that will enable the shape and position
of its stability curve to be drawn, Figure 2(b), and compared with
the tire pressure curve for the severest tire loading anticipated.
Safe bituminous pavement design requires that the stability curve
be tangent to or above the tire pressure curve for the most
severe condition of loading expected.

Before the stability curve for a bituminous pavement can be
drawn, the various sources of pavement stability must be deter-
mined, and the necessary mathematical equations required to
express the stability contribution from each source quantitatively,
must be established. When all other factors such as pavement
thickness, shape of the curve of tire pressure distribution over
the contact area, nature and rate of load, etc. are equal, it is
assumed for this paper that the strength of a bituminous pave-
ment depends upon the following three sources of stability:

(a) The inherent stability of the bituminous paving mixture

represented by its unconfined compressive strength,
/ 1 +sinf
2c 1 - sinf -’

(b) The increase in pavement stability due to the lateral sup-
port Lg provided by the portion of the pavement immediately
adjacent to the loaded area

(c) The increase in pavement stability provided by the frictional
resistance between pavement and tire and between pavement
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and base. These two frictional resistances can be repre-
sented by an equivalent lateral support L g, aciing in a
similar manner to Lg.

A fourth source of pavement stability may exist within some
bituminous pavements because of particle interference, direct
transfer of load from tire to base through larger particles of ag-
gregate, etc., due to their composition and thickness. This might
be referred to as structural stability. For bituminous pavements
such as surface treatments and some penetration macadams, that
are approximately one aggregate particle in thickness, structural
stability could be the major source of pavement stability. For
pavements of this type, aggregate particles tend to transfer load
directly from tire to base, and there is little or no tendency for
the pavement to be squeezed out between the tire and the base
course. For the sheet asphalt pavements at the other end of the
scale, in which the ratio of pavement thickness to maximum ag-
gregate particle size is usually large, structural stability is
probably unimportant and even non-existent, and pavement failure
due to lack of stability results in squeezing out between base
course and tire. Coarse graded asphaltic concrete mixtures may
be intermediate between these two extremes, and structural
stability may provide a considerable portion of the stability they
develop. On the other hand, for the less coarsely graded asphaltic
concretes used for surface courses, and for the stone-filled sheet
asphalt, sheet asphalt, and sand asphalt paving mixtures, with
which this paper is primarily concerned, and for which the pave-
ment thickness is usually considerably greater than the maximum
dimension of the largest particle, it is doubtful that structural
stability contributes more than a very minor fraction of the total
stability developed by the pavement.

The three major sources of pavement stability just referred
to apply equally to bituminous paving mixtures with either straight
or curved Mohr envelopes.

RATIONAL DESIGN OF BITUMINOUS MIXTURES
WITH STRAIGHT MOHR ENVELOPES

The strength characteristics of bituminous paving mixtures
with straight Mohr envelopes are indicated by the magnitudes of
the values of cohesion ¢ and angle of internal friction @ obtained
from the Mohr diagram based upon the triaxial test data for each
mixture, Figure 3. One of the objectives of a rational method of
design for these paving mixtures consists of determining the
smallest corresponding values of ¢ and @ needed to provide a
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Fig. 3. Typical Mohr Diagram For Triaxial Compression Test.

bituminous pavement that will be stable under the most critical
condition of loading (tire pressure curve Figure 2) anticipated
throughout its lifetime. The smaller the corresponding values
required for ¢ and @ for the paving mixture, the wider is the
range of aggregates from which a selection may be made to pro-
vide a bituminous pavement of adequate stability, and this in turn
tends to lower the cost of bituminous pavement construction.

General Equation of Stability For a Bituminous Pavement

The stability V (major principal stress) for any Mohr circle
on the Mohr diagram, Figure 3, is given by

_ 1 + sinf 1 + sin @
v/ PG (TR W

Equation (1) represents the general equation of stability for a
bituminous pavement in service. The values for c and @ are pro-
vided by the triaxial test. L represents the entire lateral support
from all sources applied to the prism of pavement just under the
loaded area. Methods for evaluating the two principal sources of
lateral support L will be described in the immediately succeeding
sections of this paper.
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The first term on the right-hand side of equation (1),
% 1 +sin@
V1 - sin@’
of the paving mixture. This is the inherent strength of the bitu-
minous pavement previously referred to, and is one of the three
major sources of pavement stability listed earlier in the paper.

represents the unconfined compressive strength

Lateral Support of Pavement Adjacent to the Loaded Area

The second term on the right-hand side of equation (1),

1+ sing
L ( 1-sing
that is made by the two different sources of lateral support L for
the prism of pavement just under the loaded area. One of these
sources of lateral support is provided by the pavement immedi-
ately adjacent to the contact area, and is designated by Ls.
Figure 4 indicates that the unconfined compressive strength of the
paving mixture can probably be taken as a conservative measure

of Lg; that is,
_ ’1 + sin @
LS - ZC 1 _ Sln¢ (2)

If the value of ILg from equation (2) is substituted for L in
equation (1), the following equation results after substitution and

simplification:
_ 4c 1 +sinf
V_l—sinsl.ll-sinﬁ (3)

A graphical representation of equation (3), in which the ¢ and
@ requirements for paving mixtures that are to have the indicated
values of stability V needed to support a wide range of tire pres-
sures, is provided in Figure 5.

It has been pointed out elsewhere (1,4,5,6), that because
Figure 4 is based on strip loading, and therefore neglects several
other sources of resistance, the lateral support L provided by the
pavement adjacent to the prism of pavement just under the loaded
area, is probably greater than the unconfined compressive strength
of the paving mixture, and the latter should, therefore, be multi-
plied by a correction factor K, becoming,

) , represents the contribution to pavement stability

1 + sing (4)

bs* 2 K T sing
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Fig. 4. Illustrating That the Lateral Support L Provided By
the Portion of a Bituminous Pavement Surrounding the Loaded

’1 + si a
Area is Given by L = 2c ——ﬂ .
1 - sing

which, upon substitution in equation (1) and simplifying, gives

- 1 +sing (K1 +sin@d) +1 - sin@
V=2 1- sing ( 1- sin@ ) (5)
Until it can be evaluated more definitely, K= 1 can probably be
taken as a conservative value for K, when equation (5) reverts

to equation (3).
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axial Test and Values of Lateral Support L = 2c¢c

Frictional Resistance between Pavement and Tire and
between Pavement and Base

Figure 6 demonstrates that frictional resistance between pave-
ment and tire and between pavement and base seems to provide a
second source of lateral support L contributing to pavement
stability. Figure 6(a) shows that if a lateral pressure is exerted
against a section of pavement between a tire and a base, a shear-
ing stress is developed between pavement and tire and between
pavement and base. Conversely, Figure 6(b) illustrates that if
sufficient vertical load V is applied by the tire, the pavement
. tends to be squeezed out between tire and base. In this case,
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movement of the pavement is resisted by the shearing stresses
developed at the interfaces between pavement and tire and be-
tween pavement and base. Figure 6(b) also shows that these
shearing stresses or frictional resistances between pavement
and tire and between pavement and base can be replaced by an
equivalent lateral pressure L.
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Fig. 6. Diagram Illustrating That Friction between Tire and
Pavement and between Pavement and Base is Equivalent To Ad-
ditional Lateral Support For the Section of Pavement Under a
Loaded Area.

Values of the coefficient of friction f between pavement and
tire have been measured by Moyer (7) and by Giles and Lee (8).
They report values for f up to 1.0 for stationary or slowly moving
vehicles, although 0.8 is a more normal top value, with 0.4 to 0.6
as average values. They found that f decreases with increasing
vehicle speed. No data appear to be presently available concerning
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the value of g, the coefficient of friction between pavement and
base. Values for f and g must be either determined or assumed
for pavement design for each project, if a rational method of

design is to be used.
Figure 7 illustrates a method for evaluating the total frictional

resistance between pavement and tire and between pavement and
base, that is developed at any point X under the loaded area at a
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Fig. 7. Diagram Illustrating Method For Calculating Value of

Lateral Support L Equivalent To Frictional Resistance Between
Pavement and Tire and Between Pavement and Base.

distance d from the edge of the contact area. Figure 7 shows that
these two frictional resistances can be expressed in terms of an

equivalent lateral support Ly, where

LR=tg(P+Q) (c + Vtan @) (6)
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‘LR=(%‘£) £ + g 4))

Figure 7 demonstrates that the factor P in equation (6) indi-
cates that the maximum frictional resistance fV that can be de-
veloped between pavement and tire cannot exceed the shearing
resistance of the bituminous pavement itself, which is given by
the Coulomb equation s = ¢ + V tan §, where V is the pressure

applied by the tire to the contact area. The factor Q is of simi-

lar significance with respect to the frictional re51stance gV be-
tween pavement and base. As shown by Figure 7, the highest
value that either P or Q can have individually is unity, and the
lowest value is zero. Therefore, the maximum value for
P +Q = 2, and the minimum value is zero.

On the basis of these considerations, the total effective lateral
support L provided by a bituminous pavement for the prism of
pavement immediately below the contact area can be expressed as

L = Lg + Lg (8)

from which it follows that equation (1) can be rewritten as

_ 1 +sing 1+ sing 1 +sin@
Ve { T sing + Ls({— sing) + Ly (15 sinﬂ) 9)

Since Lg has already been evaluated by equation {(4), and Ly
by equations (6) or (7), and remembering that the pressure exerted
by a tire is not uniform, but varies across the contact area, e.g.,
Figure 2, equation (9) can be written as follows:

=9 /1 +sin¢ ’1 +sm¢(1+sm¢
¢ 1-sin¢ sm¢ 1-sm¢

+—(P+Q) (c+v'tan¢)(1f::g) (10)

where

V = stability in p.s.i. developed by the bituminous pavement
at any point on the contact area,

unit cohesion in p.s.i. obtained from the Mohr diagram,
angle of internal friction obtained from the Mohr dia-

gram.
S H

(¢]
"



CURVED MOHR ENVELOPES 249

K = a constant which may be taken equal to unity for con-
servative design,
ratio of frictional resistance fV between pavement and
tire to the shearing resistance of the pavement repre-
sented by the Coulomb equation s = ¢ + V tan @, and,
therefore, has a maximum value of unity,
Q = ratio of frictional resistance gV between pavement and
base to the shearing resistance of the pavement
s = ¢ +vtan @, and has a maximum value of unity,
d = distance in inches from the edge of the contact area to
any point on the contact area where the value of stability
V is required,
t = thickness of bituminous pavement in inches, and
= the average vertical pressure exerted by the tire be-
tween the edge of the contact area and each point on the
contact area where the value of stability V is required.

o
[0

When Ly is represented by equation (7) instead of equation
(6), equation (10) becomes

- ’1 + sin @ ’1+sin¢ 1 + sin @
Vz2e 1--sin¢J+2CK 1-sinﬂ(1-sin¢)

H(87) v (romd) an

in which all symbols have the significance already explained for
them.

Evidence that the frictional resistance fV between pavement
and tire, and the frictional resistance gV between pavement and
base may be important sources of stability for bituminous pave-
ments has been presented in previous papers (1,4,5,6). In addi-
tion, field experience and observation have provided many exam-
ples of the important influence of good frictional resistance be-
tween pavement and base on pavement stability. An otherwise
well-designed paving mixture, when laid on a smooth base, or on
a base to which it is poorly bonded or not at all, will quickly
develop indications of instability under traffic, usually in the
form of large tension cracks of well-recognized pattern.

Figure 8 illustrates the application of equations (10) and (11)
to the actual design of a bituminous paving mixture. The heavy
continuous curve represents the actual pressure applied to the
pavement by the tire at all points across the transverse axis of
the contact area. The short curves on the right- and left-hand
sides of Figure 8 are stability curves for different values of
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Fig. 8. Influence of Typical Pressure Distribution Over the
Contact Area, and of Various Degrees of Frictional Resistance
between Pavement and Tire and between Pavement and Base in
Terms of f + g Values On the Design of the Underlying Bitumin-
ous Pavement (Truck Tire),

f + g for a given paving mixture for which ¢ = 6.9 p.s.i. and

@ = 25° as indicated. The positions of these stability curves are
located by applying equations (10) and (11). The location of the
stability curve at the edge of the contact area (75 p.s:i.) is cal-
culated by means of the first two terms on the right-hand side of
these equations. The increase in stability with increasing dis-
tance inward from the edge of the contact area indicated by the
stahility curves of Figure 8 is due to the frictional resistance
between pavement and tire and between pavement and base, and
is calculated by means of the third term on the right-band side
of equations (10) and (11), equation (10) being employed for the

P + Q = 2 curve, and equation (11) for the f + g = 0.93 and

f + g = 0.5 curves. These stability curves indicate that because
of these two frictional resistances the pavement can sustain a
higher and higher vertical load as the centre of the contact area
is approached from the edge; that is, pavement stability increases
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with increasing distance inward from the edge of the loaded area.

The ordinate axis in the centre of the diagram indicates
values for both the tire pressure exerted on the contact area, and
the stability developed by the pavement. If it is assumed that the
stability of the pavement must be not less than the pressure ap-
plied by the tire at any location on the contact area, then it is
apparent that the stability curve must not cut through the tire
pressure curve at any point. It is equally clear that the critical
stability curve is the one that is just tangent to the pressure
curve. In Figure 8, the stability curve for f + g = 0.5 cuts through
the pressure curve, indicating that the pavement would be unstable
for the portion of the contact area for which the stability curve
lies below the pressure curve. The stability curve for f + g = 0.93
is just tangent to the pressure curve, and indicates this to be the
lowest value of f + g (coefficient of friction between pavement and
tire plus coefficient of friction between pavement and base) for
which this particular paving mixture (c = 6.95 p.s.i., § = 25%
would be stable at all points on the contact area. The stability
curve labelled P + Q = 2, on the other hand, indicates the highest
f + g values that could be developed by this paving mixture, since
any f + g stability curve lying above the P + Q = 2 curve would
represent a value of frictional resistance between pavement and
tire, or between pavement and base, or both, that was greater
than the shearing resistance of the bituminous paving mixture
itself. It is apparent that the pavement would fail in shear before
such a high value for f, g, or f + g could be developed.

The importance of frictional resistance between pavement
and tire and between pavement and base as a source of pavement
stability is emphasized in Figure 9, in which stability curves for
f+g=0,f+g=02,f+g=0.6, andf + g = 1.2 are shown on the
right-hand side. These stability curves demonstrate very clearly
the decrease in values of ¢ and @ that is possible as the f + g val-
ues are increased. For example, whenf + g = 0, a paving mixture
with ¢ = 7.8 p.s.i. and @ = 30°, developing a stability of 107 p.s.i.
at the edge of the contact area, is required, while for f + g = 1.2,
a bituminous mixture with ¢ = 4.0 p.s.i. and ¢ = 30°, developing a
stability of only 54 p.s.i. at the edge of the contact area, is ade-
quate; that is, by increasing the f + g value from 0 to 1.2 stability
requirements for the paving mixture itself in terms of ¢ and ¢
values have been reduced by one-half.
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Discussion

The influence of other factors such as pavement thickness,
shape of the curve of tire pressure distribution over the contact
area, nature and rate of loading, etc. on the stability of asphalt
pavements in service has already been described elsewhere (1,
4,5,6).

While this portion of the paper provides a theoretical study
of the bituminous pavement stability problem as it pertains to
paving mixtures with straight Mohr envelopes, the conclusions
obtained are in at least qualitative agreement with observations
of pavement performance in the field. However, more accurate
information is needed concerning the exact shape of the curve of
tire pressure distribution across the contact area for the most
critical tire loadings on airports and highways, and about the
magnitudes of such variables as K, I, g, P, Q, etc., before the
overall design equations (10) and (11) can be used with complete
confidence, unless fairly large safety factors are to be applied.
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Even when such fairly large safety factors are employed, their
actual magnitude must remain relatively unknown until each of
these variables and its influence on pavement stability can be
accurately evaluated.

Nevertheless, if particular care is taken to obtain a strong
bond between pavement and base course (a high value for coeffi-
cient of friction g), if design is based upon the stationary load
condition and for the maximum pressure to be applied to the con-
tact area, and if it is assumed that the factor K = 1, then it is be-
lieved that equation (3) or the design curves of Figure 7, which
are based on equation (3), provide a conservative basis for bitu-
minous pavement design. That this may be so is verified by the
fact that the design curve of Figure 7 for 100 p.s.i. tire pressure
requires approximately the same corresponding values for ¢ and
@ as the lower boundary of the satisfactory area of The Asphalt
Institute's triaxial design chart, which has been checked with
pavement performance in the field (9).

If bituminous pavement design is based upon equation (3) and
the design curves of Figure 7, the third term on the right-hand
side of equations (9), (10), and (11) is being neglected, and it,
therefore, serves as a safety factor. This is well illustrated by

SHEAR STRESS
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Fig. 10. Influence of Lg and LR On Pavement Stability.
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Figure 10, which by means of a Mohr diagram, represents
graphically the general equations of design (1), (3), (9), (10), (11)
developed in the first part of this paper. V' is the pavement
stability that would result if the only source of pavement stability
were the unconfined compressive strength of the paving mixture.
V" represents the pavement stability developed on the assump-
tion that the pavement adjacent to the prism of pavement beneath
the loaded area provides the only source of lateral support L,
and that L. = Lg = the unconfined compressive strength of the
paving mixture (K = 1). V™ indicates the pavement stability de-
veloped when the lateral support L = Lg + Lg. In this case, part
of the lateral support L is due to pavement adjacent to the loaded
area, Lg, while part is provided by the frictional resistances be-
tween pavement and tire and between pavement and base, Lg.
Figure 10 demonstrates that neglect of Ly reduces the estimated
pavement stability from V™ to V", and thereby tends to provide
the safety factor already referred to, if design is based upon
equation (3) and Figure 7.

The design curves of Figure 7 provide bituminous pavement
stability requirements for the entire range of tire inflation pres-
sures in common use today, from the low pressure tires of pas-
senger cars to the 300 p.s.i. and higher inflation pressures of the
tires on some current jet aircraft.

RATIONAL DESIGN OF BITUMINOUS MIXTURES
WITH CURVED MOHR ENVELOPES

The previous section of this paper dealt with the rational de-
sign of bituminous pavements constructed with bituminous mix-
tures with straight Mohr envelopes. The balance of this paper is
concerned with the same design problem for bituminous mixtures
with curved Mohr envelopes. As was the case last year, no at-
tempt will be made in this paper to explain why the triaxial data
for some bituminous mixtures result in curved Mohr envelopes.
It is accepted as an experimental fact that most bituminous pav-
ing mixtures have Mohr envelopes that appear to be essentially
straight lines, but that for some the Mohr envelope is curved. It
is further assumed for this paper that the point of contact (tan-
gency) between the curved Mohr envelope and any Mohr circle
defines the angle of the plane of failure through the specimen for
the particular conditions of stress represented by that Mohr cir-
cle. This means that the angle between the plane of failure and
the vertical becomes gradually larger (and approaches 45° as an
asymptote) as the test specimen (or specimens) is (are) subjected
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to successively greater magnitudes of the principal stresses V
and L under incipient failure conditions.

If a rational method of design is to be considered for bitu-
minous pavements constructed from paving mixtures with
straight Mohr envelopes, there is equal need for a rational de-
sign when the Mohr envelope for the paving mixture is curved.
The latter represents the principal objective of the present
paper.

When considering the design of bituminous pavements with
paving mixtures having curved Mohr envelopes in the paper pre-
sented at last year's meeting, it was pointed out that a curved
Mohr envelope might be represented by either a parabolic equa-
tion (power function), or an exponential equation. Since it seemed
to be somewhat easier to use, the development of a rational
method of design for bituminous paving mixtures with curved
Mohr envelopes contained in last year's paper was based upon
representing the curved Mohr envelope by a parabolic or power
type of equation. During the discussion of this paper at the meet-
ing a year ago, Dr. Charles Mack suggested a power function
equation of somewhat different form for the representation of a
curved Mohr envelope.

Comparison of Present Method with Last Year's Approach

Further investigation since last year's paper was published
has indicated certain limitations to the power function (parabolic)
type of equation for representing a curved Mohr envelope. This
is illustrated in Figure 11, in which an attempt has been made to
represent the Mohr envelope through the three points X, Y, and Z
obtained from triaxial data, by three curves. One of these curves
is given by the parabolic equation contained in our last year's
paper, another is provided by Dr. Mack’'s equation of the same
general type (a power function), while the third curve results
from the use of an exponential equation.

Figure 11 demonstrates that the curves resulting from our
last year's parabolic equation, and Dr, Mack's equation, both cut
the abscissa to the right of the origin, while the curve given by
the exponential equation cuts the abscissa to the left of the origin.

It will be noted from Figure 11 that one extremity of the di-
ameter of the Mohr circle representing the unconfined compres-
sive strength of a bituminous paving mixture must be located at
the origin of the Mohr diagram. Figure 11 indicates that when
attempting to represent the curved Mohr envelope by either the
parabolic or Dr. Mack's equation, curves are obtained that
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Fig. 11. Mohr Envelopes Provided By Three Different Equa-
tions Compared On the Basis of Given Triaxial Data.

intersect the Mohr circle representing the unconfined compressive
strength. The envelope to a group of Mohr circles should be tan-
gent to each of them, and no longer satisfies the requirements for
an envelope if it cuts through any one of the circles of the group
in the manner illustrated in Figure 11. Consequently, for the
conditions represented by Figure 11, neither the parabolic equa-
tion contained in last year's paper, nor Dr. Mack's equation, is
capable of representing the curved Mohr envelope, since the
curves for both equations intersect the Mohr circle representing
the unconfined compressive strength. On the other hand, the
curve provided by the exponential equation is tangent to the Mohr
circle representing the unconfined compressive strength, and ap-
pears to meet all the other requirements of a curved Mohr
envelope.

While our paper for last year's meeting indicated that the
curved Mohr envelopes provided by the triaxial data for some
bituminous paving mixtures can be satisfactorily represented by
a parabolic equation, Figure 11 has shown that this is not always
the case. It would appear, therefore, that an exponential equation
may be more generally useful for representing a curved Mohr
envelope.

The method described in this paper differs from that outlined
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last year in another important respect. In the paper presented a
year ago, a method was proposed that enabled equations (10) and
(11), which were derived for the rational design of paving mix-
tures with straight Mohr envelopes, to be used also for the ra-
tional design of paving mixtures with curved Mohr envelopes,
This required that the proper values for ¢ and @ be obtained from
Mohr diagrams for bituminous mixtures with curved Mohr en-
velopes, to substitute in equations (10) and (11). Since ¢ and @
are not constant for paving mixtures with curved Mohr envelopes,
it was necessary to develop a method to provide the particular

c and @ values required. For this purpose, the Mohr circle was
determined that represented the stability of the pavement at the
edge of the contact area of a loaded tire on the pavement. At the
point of contact between this Mohr circle and the Mohr envelope,
a tangent was either drawn on the basis of visual judgment, or its
precise location and slope were calculated. The ¢ and @ values
given by this tangent were substituted in equations (10) or (11) to
determine the stability of the pavement at the edge of the contact
area. These c and @ values were also employed to calculate the
position of the stability curve, e.g., Figure 15, on the basis of
equations (10) and (11). As indicated in last year's paper, this
is an approximate rather than a rigorously accurate method for
establishing the stability curve for paving mixtures with curved
Mohr envelopes.

The present paper will show that it is not necessary to deter-
mine ¢ and @ values, nor to employ equations (10) and (11) to
determine the stability curve for paving mixtures with curved
Mohr envelopes. The stability values required can be precisely
determined from the mathematical relationships that exist be-
tween the curved Mohr envelope and the Mohr circles. No deter-
mination of or reference to ¢ and @ values is made, and equations
(10) and (11) are not used.

Design Requirements For Paving Mixtures with Curved
Mohr Envelopes

The objective of a rational method of design for bituminous
paving mixtures with curved Mohr envelopes (as it is for those
with straight Mohr envelopes) is to determine the location of the
stability curve for the pavement, and to compare it with the tire
pressure curve, e.g. Figures 2, 8, 9, and 15. The stability curve
in each of these figures begins at the edge of the contact area and
slopes upward toward its centre. Two items of information are,
therefore, required:
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(1) The stability of the pavement at the edge of the contact
area; that is, the location of the beginning of the stability
curve.

(2) The stability of the pavement at each point between the
edge and the centre of the contact area; that is, the loca-
tion of the balance of the stability curve.

For bituminous paving mixtures with straight Mohr envelopes,
the stability of the pavement at the edge of the contact area is
given by the first two terms of the right-hand side of equations
(9), (10), and (11), while the stability of the pavement at all points
between the edge and the centre of the contact area is determined
by means of the third term on the right-hand side of these equa-
tions. While it makes no use of these equations, nor of ¢ and ¢
values, a roughly similar approach is employed for determining
the location of the stability curves for paving mixtures with
curved Mohr envelopes.

The procedure for determining, first, the stability of the pave-
ment at the edge of the contact area, and second, the stability of
the pavement at all points between the edge and the centre of the
contact area, will be briefly described. The development of the
equations required, and a sample calculation, are provided in the
Appendix.

Pavement Stability At the Edge of the Contact Area

The determination of the stability of a bituminous pavement
with a curved Mohr envelope at the edge of the contact area (the
position of the stability curve at the edge of the contact area) in-
volves the following steps.

Step No. 1

Corresponding V and L values from the triaxial data are
plotted in the form of a principal stress diagram, Figure 12. A
smooth curve is drawn through the points either arbitrarily or
by methods available for this purpose (10).

Step No. 2.

Several V and L values from the smooth curve of Figure 12
provide Mohr circles for the corresponding Mohr diagrams of
Figures 13 and 14. Since Figures 13 and 14 must be kept as
simple as possible to illustrate the method of design for bitumin-
ous mixtures with curved Mohr envelopes, only two of these Mohr
circles are retained in these figures. The values of Vand L.
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Fig, 12, Principal Stress Diagram For a Bituminous Paving
Mixture with A Curved Mohr Envelope.

selected should range from the unconfined compressive strength,
L = 0, to somewhat greater than the stability value V likely to be
required, which should be large enough {0 enable the stability
curve to be drawn over the required range, e.g. Figure 15(a).
Draw a smooth curved line envelope tangent to the several Mohr
circles, Figures 13 and 14.



260 McLECD
Step No.

For this paper il is assumed that the Mohr envelopes of Fig-
ures 13 and 14 can be represented by a relatively simple mathe-
matical equation of the exponential type.

s +d=mlog(n + a) (12)

where

s and n are shear and normal stress, respectively, on the
plane of failure, and

d, m and a are constants whose values vary with the location
and curvature of the curved Mohr envelopes for different
bituminous mixtures.

Equation (12) contains three unknown constants, d, m, and a.
These constants can be evaluated by substituting the s and n
values for three well-distributed points on the curved line envel-
ope, e.g. X, Y, and Z in Figure 13, into equation (12) and solving

70
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Fig. 13. Illustrating Maximum Vertical Load V Supported By
a Bituminous Paving Mixture with a Curved Mohr Envelope When
the Lateral Support L is Equal to the Unconfined Compressive
Strength of the Material,
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Fig, 14, Illustrating Maximum Vertical Load V That Can Be
Carried By a Bituminous Paving Mixture with a Curved Mohr
Envelope When the Lateral Support KU Is Either a Fraction or a
Multiple of the Unconfined Compressive Strength of the Material
(General Case).

the resulting three equations simultaneously (see Appendix). The
three points X, Y, and Z should be well distributed over the range
from just slightly to the right of the point of tangency between the
envelope and the Mohr circle representing the unconfined com-
pressive strength, to somewhat larger than the stability value V
required (see Step No. 2 above). The s and n coordinate values
for X, Y, and Z should be read as precisely as possible from the
smooth curved envelope.

For the curved Mohr envelopes of Figures 13 and 14, the
sample calculation worked out in the Appendix gives the following
values for d, m, and a:

d = 28.05
m = 32.93
a= 930

Figures 13 and 14 illustrate the shape of the curved Mohr
envelope given by the exponential equation.



262 McLEOD

Step No. 4

For the unconfined compressive strength U of the paving mix-
ture, represented by Mohr circle (1) in Figures 13 and 14, the
lateral support L is of course zero. The Appendix indicates the
following equation for evaluating U:

U = /mlog (ng + a) - d72
Nu

+ Nu (13)

and the sample calculation in the Appendix indicates that for
Figures 13 and 14

U = 2449 p.s.i.

Step No. 5

When the lateral support, Lg = L,, provided by the pavement
adjacent to the loaded area, is equal to the unconfined compres-
sive strength of the paving mixture U, Mohr circle (2) in Figure
13, the Appendix gives the following equation for the stability of
the pavement, V,, at the edge of the loaded area.

2 .
v, = {m log Elnz ++ua) - d} +n, (14)
.2

When this lateral support Lg = L, is equal to KU, the uncon-
fined compressive strength U multiplied by a factor K, Mohr
circle (3) in Figure 14, the following equation for the stability of
the pavement at the edge of the loaded area is given in the Appen-
dix:

V. = {m log (ng + a) - d}2
: n, +u

+ g (15)

Consequently, for the paving mixture represented by the tri-
axial data of Figure 12 and the Mohr diagram of Figure 13, and
for the specific case where the lateral support Lg provides by
the pavement adjacent to the loaded area is equal to the uncon-
fined compressive strength U, the stability of the pavement at the
edge of the loaded area, as given by the sample calculation in the
Appendix, is V, = 85.9 p.s.i.

For the more general case, Figure 14, where the lateral sup-
port Ls provided by the pavement adjacent to the loaded area is
equal to KU, the unconfined compressive strength multiplied by
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the factor K, where K may be greater than, equal to, or less than
unity, the stability of the pavement at the edge of the loaded area,
as given by the sample calculation in the Appendix for the partic-
ular conditions of Figure 14, is V; = 94,68,

Depending upon the conditions they represent in each case,
either V, or V, provide the position of the stability curve at the
edge of the contact area.

Pavement Stability between the Edge and Centre of the
Contact Area

The increase in pavement stability between the edge and cen-
tre of the contact area is due to frictional stresses between
pavement and tire and between pavement and base, which oppose
the tendency of the applied load to squeeze the pavement out be-
tween the tire and the base course. These frictional resistances
are equal to an equivalent lateral support Ly, which is expressed
by equation (7),

Lr= 4 @+ @ (7)

where V' is the average tire pressure acting on the contact area
over a distance d from the edge of the contact area, and the other
symbols have the significance previously ascribed to them. The
stability of the pavement at any point between the edge and the
centre of the contact area can be determined by the following
steps.

Step No. 6

By means of equation (7), evaluate Ly for an element of pave-
ment at a small definite distance inward from the edge of the
contact area, e.g. 1/2 inch from the edge.

Step No. 7

Add the value of LR obtained by Step No. 6 to the value of Lg
employed in Step No. 5 to calculate the stability V, or V, of the
pavement at the edge of the contact area.

Step No. 8

Since Ls + Lr = KU, where U is the unconfined compressive
strength of the paving mixture, the value of stability V can be
calculated from equation (15); that is, the value of stability V
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at one-half inch inward from the edge of the contact area is given
by

V= {m logén_+K% - d}2 - (15)

Step No. 9

The stability V at other distances d inward from the edge of
the contact area can be similarly calculated by Steps Nos. 6, 7,
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and 8. By plotting these stability values V versus distance inward
from the edge of the contact area, and drawing a smooth curve
through them, a stability curve like that of Figure 15(a) is ob-
tained.

Step No. 10

By comparing the stability curve with the tire pressure curve,
e.g. Figure 15(a), it can be quickly determined whether or not the
pavement will be stable under the applied load. If the stability
curve cuts through the tire pressure curve at any point, pavement
instability can be anticipated since this indicates that the applied
load is greater than the pavement stability over part of the con-
tact area. If the stability curve is tangent to or above the tire
pressure curve for all points on the contact area, the pavement
stability is equal to or greater than the applied load, and a stable
pavement could be normally expected.

COMPARISON OF STABILITY VALUES FOR
CURVED VERSUS STRAIGHT MOHR ENVELOPES

Figure 16 indicates the degree of error to be expected if an
engineer should consider drawing the best straight line through
the triaxial data of the principal stress diagram of Figure 16(a)
or Figure 12, and treating the data as though it provided a straight
rather than a curved Mohr envelope. The method of least squares
was employed to locate the best straight line through the data of
Figure 16(a). From Figure 16(a) the straight and curved line
Mohr envelopes for the corresponding Mohr diagram of Figure
16(b) were obtained.

For both curved and straight Mohr envelopes of Figure 16(b),
Mohr circles are compared for which the lateral support L is
equal to 1.6 times the unconfined compressive strength. For the
straight Mohr envelope, it will be noted that the stability Vs =
1424 p.s.i., while for the curved Mohr envelope the stability V.
is only 110.2 p.s.i. Consequently, by assuming a straight Mohr
envelope for the triaxial data of Figure 16(a), instead of the
curved Mohr envelope that they actually represent, an engineer
would over-estimate the stability of the bituminous pavement by
very nearly 30 per cent.

SUMMARY

(1) A rational method for bituminous pavement design for bitu-
minous mixtures with straight Mohr envelopes is briefly
reviewed.
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(2) When all other factors are equal, it is shown that the stability
of a bituminous pavement depends very materially on the
lateral support provided by the portion of the pavement adja-
cent to the loaded area, and upon the frictional resistances
between pavement and tire and between pavement and base.

(3) A rational method for bituminous pavement design for bitu-
minous mixtures with curved Mohr envelopes is described,
assuming that the curved Mohr envelope can be represented
by an exponential equation.

(4) By means of an example, it is shown that by employing the
best straight Mohr envelope for a bituminous mixture for
which the triaxial data actually plot as a curved Mohr envel-
ope, the stability of the paving mixture might be over-
estimated by as much as 30 per cent.
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APPENDIX

Analysis of Mohr Diagrams with
Curved Mohr Envelopes

For the Mohr diagrams of Figures 13 and 14, it is assumed that the curved
Mohr envelope can be represented by the exponential equation

s +d=m log (n + a) (18)

where

s and n are shear and normal stress, respectively, and d, m, and a are
constants .

In Figures 13 and 14, the equation for Mohr circle (1) representing the un-
confined compressive strength is

(n-3) -G

which, upon rearranging and simplifying, becomes

s?2 = nU - n? (19)
where
U = unconfined compressive strength, and
nand s = normal and shear stress, respectively, on any plane through the

test specimen subjected to the unconfined compressive strength
u.

In Figure 13, the equation for Mohr circle (2), for which the lateral support
L, is equal to the unconfined compressive strength U, is

[o- (5320 oo - (55

which upon rearranging and simplifying becomes
s2=n(V, +U)-n -V, U (20)

where

V, = the major principal stress when the lateral support L, is equal
to the unconfined compressive strength U, and
nand s = normal and shear stresses on any plane through the specimen

when the principal stresses are V, and U.

In Figure 14, the equation for any Mohr circle (3), for which the principal
stresses are V, and Lj, where Ly = KU, is

[ g2 - ()



270 McLEOD

which, upon rearranging and simplifying, becomes

s2 = n (Vg + Lg) - n?2 - VyL, (21)
where
Vs and Ly = major and minor principal stresses, and Ly = KU, and
n and s = normal and shear stresses on any plane through the specimen

when the principal stresses are V; and L.

In Figures 13 and 14, the slope of the tangent at any point on the curved
Mohr envelope is given by the first derivative of equation (18),

ds _ 04343 m
dn n+a (22)

In Figure 13 and 14, the slope of the tangent at any ;Soint on the circum~
ference of Mohr circle (1) is given by the first derivation of equation (19)

ds _ U - 2n
dn ~ 2s (23)

In Figure 13, the slope of the tangent at any point on the circumference of
Mohr circle (2) is given by the first derivative of equation (20),

ds _ V, + U- 2n
- e (24)

In Figure 27, the slope of the tangent at any point on the circumference of
Mohr circle (3) is given by the first derivative of equation (21),

ds _ Vg + - 2n
an -2 -3 ;: (25)
Analysis of Mohr Circle (1)

Representing Unconfined Compression Figures 13 and 14

For Mohr circle (1) in Figures 13 and 14, the unconfined compressive
strength U is to be evaluated and values can be determined for ny and sy, the
normal and shear stress coordinates for the point of tangency G between the
curved Mohr envelope and Mohr circle (1), and for ¢y and %, given by the
tangent to the Mohr envelope at G.

At the point of tangency G between the curved Mohr envelope and Mohr
circle (1), the equation for the curved Mohr envelope is

Sy +d = mlog (n, + a) (18a)
and the equation for Mohr circle (1) is
sy® = ny U - ng? (192)

Squaring equation (18a), equating it to equation (19a) and rearranging,
gives



CURVED MOHR ENVELOPES 271

U=[x_nlog(nu+a)- d/? + n.?

o (26)

At the point of tangency, G, the slopes of the tangents to Mohr circle (1)
and to the curved Mohr envelope are equal. Consequently, equating equations
(22) and (23), and introducing appropriate subscripts, gives

04343 m _ U - 2n,

ny + a 28y

which, upon substituting the right-hand side of equation (18a) for sy, simpli-
fying, and rearranging, becomes,

_ 0.8686 m /mlog (ny + a) - d/
Ny + a

U

+ 2ny (27)

Equating equations (26) and (27), and simplifying, gives,

/mlog (ny + a) - d/ flng + a) {m log (ny + a) - d} - 0.8686 m n,/
- m?(ny +a) =0 (28)

In equation {28), d, m, and a are constants from equation (18), which repre-
sents the curved Mohr envelope, and values for them are given in Figures 13
and 14. The method for evaluating each of the three constants d, m, and a is
illustrated in the example of calculations given later in the appendix. There-
fore, since d, m, and a are known, the value for ny required to satisfy equa-
tion (28) can be quickly determined from a graphical plot of equation (28)
versus trial values for n,, Figure 17(b).

By substituting the value for n, found in this manner in equations (26) and
(27), the value for U can be calculated, since the values for the constants d, m,
and a have been established.

In addition, since values for ny, d, m, and a have been determined, values
for sy, By, and ¢, can be calculated from the following equations:

Sy +d = mlog(n, + a) (18a)
04343 m
= -1
gu tan N, +a (29)
€y = Sy - ngtan @, (30)

Because it would add to the detail of the diagrams, the tangent to Mohr
circle (1) at its point of tangency with the curved Mohr envelope is not shown
in either Figure 13 or 14.

Analysis of Mohr Circle (2), Figure 26

For Mohr circle (2) in Figure 13, for which the lateral pressure L, is equal
to the unconfined compressive strength U, the major principal stress V, is to
be evaluated, and values can be determined for n, and s,, the normal and shear
stress coordinates for the point of tangency, I, between the curved Mohr envel-
ope and Mohr circle (2), and for ¢, and @, given by the tangent to the curved
Mohr envelope at 1.
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Mohr Envelopes.

At the point of tangency, I, the equations for the curved Mohr envelope and
for the Mohr circle (2) are, respectively,

s, + d = mlog (n, + a) (18b)

and

$2=n(V, +U) - n?-V, U (20p)
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Squaring equation (18b), equating it to equation (20b), and rearranging,
gives

m lo +a) - d/?
v, = & gn:niu + 1, (31)

At the point of tangency I, the slopes of the tangents to the curved envelope
and Mohr circle (2) are equal. Therefore, equating equations (22) and (24), in-
troducing appropriate subscripts, and rearranging (remembering that
s, + d = m log (n, + a)), gives

v, - 0433m 2{mlogln, v ) - &7, o
2
n, +a

(32)

Equating equations (31) and (32), and simplifying, gives,

(n, + a) {m log (n, + a) - d}z - (n, - U) /0.8686 m {m log (n, + a) - d}
+(n, +a)(n, - U/ =0 (33)

In equation (33), values for the constants d, m, and a from equation (18) for
the curved Mohr envelope are given in Figures 13 and 14 (see the example of
calculations at the end of this appendix for a method for their evaluation), the
value for U has already been determined for Mohr circle (1), and n, is, there-
fore, the only unknown. The value for n, required to satisfy equation (33) can
be quickly determined from a graphical plot of equation (33) versus trial
values for n,, Figure 17(c). '

By substituting the value for n, found by this means in equations (31) or
(32), the value of V, can be calculated, since the values for d, m, a, U, and n
have been determined.

In addition, since values for n,, d, m, and a are known, values for s,, §,,
and c, can be calculated from the following equations:

s, + d = mlog (n, + a) (18p)
- -1 04343 m

b= @ T e

€, = S, - N, tan @, (35)

Analysis of Mohr Circle (3), Figure 14

For any Mohr circle (3), Figure 14, for which the lateral pressure L is
equal to KU, where KU is the unconfined compressive strength of the paving
mixture multiplied by any specified factor K, the major principal stress V,
is to be evaluated, and values can be determined for ng and s,, the normal and
shear stress coordinates for the point of tangency, F, between the curved Mohr
envelope and Mohr circle (3), and for ¢, and @, given by the tangent to the
curved Mohr envelope at F.

At the point of tangency F, the equations for the curved Mohr envelope and
for Mohr circle (3), respectively, are

sy +d = mlog (n, + a) (18¢)
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and
Sg2 = ng (Vg + Lg) - ng2 - V, Ly (19¢)

Squaring equation (18¢), equating it to equation (19¢), and rearranging,
gives

V. = {m log (n; + a) - d}?
: n, - Ly

At the point of tangency, F, the slopes of the tangents to the curved envel-
ope and Mohr circle (3) are equal. Therefore, equating equations (22) and
(25), introducing the appropriate subscripts, and rearranging (remembering
thats; + d = m log (n, + a)), gives

+ ng (36)

. 04343 m /2 {mlog(n, +a) - d}7/

V.
3 n, +a

- Ly + 2n4 (37)

Equating equations (36) and (37), and simplifying, gives

(n, + a) {m log (ng + a) - d}z
- (ng - Lg) /0.8686 m {mlog (ng + a) - d} + (ng + ) (ng - Ly)7 = 0 (38)

In equation (38), values for the constants d, m, and a from equation (18) for
the curved Mohr envelope are given in Figures 13 and 14 (see example of cal-
culations at the end of this appendix for their evaluation), the value of L, = KU
is known, since the value of K to be used is always specified, and the value of
U has already been determined for Mohr circle (1), and ny is, therefore, the
only unknown. The value for n, required to satisfy equation (38) can be
quickly determined from a graphical plot of equation (39) versus trial values
for ny, similar to that of Figure 17(c) for n,.

By substituting the value for ny found by this means in equations (36) or
(37), the value for V; can be found, since the values for d, m, a, L, and n,
have been already determined. It will be remembered that L, = KU, for
which the value of K is always specified, and the value of U, the unconfined
compressive strength, has already been determined for Mohr circle (1).

Since values for d, m, a, and n; have been determined, values for s,, §,,
and c; can be calculated from the following equations:

sy + d = mlog (n, + a) (18¢)
_ ;04343 m

¢, = tan-! ————ns T a (39)

cg = 83 - ng tan @, (40)

AN EXAMPLE OF CALCULATIONS

To Evaluate the Constants d, m, and a In the Exponential Equation
Representing the Curved Mohr Envelope

It is assumed that points representing the V and L values provided by a
triaxial test on a bituminous paving mixture with a curved Mohr envelope have
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been plotted on a principal stress diagram, and that the best smooth curve has
been drawn through them, e.g. Figure 12, Using V and L values from well
distributed points on this curve, describe a number of Mohr circles and draw
a smooth curved envelope tangent to them. Select three points X, Y, and 2
on this curved Mohr envelope, Figure 13, of such spacing that point X is
slightly to the right of the point of tangency, G, of the curved Mohr envelope
with Mohr circle (1) representing the unconfined compressive strength,
point Z is somewhat to the right of the point of tangency of the curved en-
velope with the Mohr circle considered to represent the most critical stability
value of the pavement; that is, somewhat to the right of I in Figure 13, and of
F in Figure 14; while point Y is approximately half-way between them.

As precisely as they can be read from the curved Mohr envelope of Figure
13, the normal stress and shear stress (n and s) coordinates for points X, Y,
and Z are as follows:

n s
.8.1. p.s.i.
X 5 10.0
Y 40 271
Z 80 36.2

The exponential equation assumed to represent the curved Mohr envelope
over the range of stress under consideration is

s +d=mlog(n + a) (18)

Equation (18) contains three constants, d, m, and a, and the two variables
normal stress n and shear stress s. The three constants d, m, and a can be
evaluated by substituting the n and s values for the three points X, Y, and Z
in equation (18) to form three equations that can be solved simultaneously.
These three equations are:

10 +d=mlog(5 + a) (a)
27.7 + d = mlog (40 + a) (b
36.2 + d = m log (80 + a) (e)

Combining equations (a) and (b), and equations (b) and (c), so as to elimi-
nate m, gives,

(10 + d) log (40 + a) = (27.7 + d) log (5 + a) (d)
and
(27.7 + d) log (80 + a) = (36.2 + d) log (40 + a) (e)

Substitute trial values for a in equation (d) and calculate corresponding
values for d. Substitute the values for a and d so obtained into equation (e), and
plot the left-hand side of equation (e) minus the right-hand side against the
trial values for a, Figure 17(a). When this difference is zero, the correct value
for a has been obtained. Figure 17(a) indicates that the correct value for
a.=93,

When the correct value for a, 9.3, is substituted in equation (d), it is found
that d = 28.05. These values for a and d are also found to satisfy equation (e),
which serves as a check.
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When the values a = 9.3 and d = 28.05 are substituted in one or more of
equations (a), (b), or (c), it is found that the value for the constant m = 32.93.

Therefore, the required values for the constants d, m, and a in equation
(18) are

d = 28.05
m = 32.93
a= 93

Analysis of Mohr Circle (1), Unconfined Compression, Figures 13 and 14

The value for ny at the point of tangency, G, between the curved Mohr
envelope and Mohr circle (1), Figure 13, where n, represents the normal
stress on the plane of failure for the unconfined compressive strength condi-
tion, can be calculated from equation (28),

/mlog (ny + 2) - d/ /lnu + a) {m log (ny + a) - d} - 0.8686 m ny/
-ng2 (ny +3) =0 (28)

Values for the constants d, m, and a have already been determined and the
value of n can be found graphically by plotting equation (28) against trial values
for ny until a value for ny is found that satisfies the equation. Figure 17(b) il-
lustrates this method, and indicates that the required value for n, = 2.77 p.s.i.

By substituting the values determined for d, m, a, and n, in equations (26)
or (27), the value of U, the unconfined compressive strength, Figures 13 and 14,
can be calculated.

U = /m log (n, ; a) - d? + ng (26)

from which
U = 2449 p.s.i.
From the values for d, m, a, and n, that have been established, values for

Su, Pu, and cy can be easily calculated by means of equations (18a), (29), and
(30).

Sy + d = mlog(ny + a) (18a)
from which
Sy = 7.58 p.s.i.
@, = tan~! Or;—i:z:—s—am (29)
from which
g, = 51°21'
Cy = Sy - Ny tan @, (30)

from which
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c, = 4.11 ps.i.

Consequently, for Mohr circle (1) in Figures 13 and 14,

U = 2449 p.s.i.
ng, = 2.77 p.s.i.
s, = 7.58 p.s.i.
cy = 4.11p.s.i.
Py = 51° 21’

Analysis of Mohr Circle (2), Figure 13

The value for n, at the point of tangency I between the curved Mohr envelope
and Mohr circle (2), Figure 13, where n, represents the normal stress on the
plane of failure when the principal stresses are V,, and L, = U, can be calculated
from equation (33).

(n, + a) {mlog(n2 +a) - d}z- (n, - U)
/0.8686 m {m log (n, + a) - d} +(ny +a) (n, - U)/ =0 (33)

Values for the constants d, m, and a, and for the unconfined compressive
strength U have already been determined, and the value for n can be found
graphically by plotting equation (33) against trial values for n, until this equa-
tion is satisfied. Figure 17(c) illustrates this method, and indicates that the
required value for n, = 47.7 p.s.i.

By substituting the values determined for d, m, a, U, and n, in equations
(31) or (32), the value of V,, the major principal stress, Figure 13, can be
calculated.

m lo +a) -d
vz=1 g(::..u) —7‘+n, (31)
from which
V, = 869 p.s.i.

From the values for d, m, a, and n, that have been established, values for
8,, §;, and ¢, can be easily calculated by means of equations (18b), (34), and
(35).

S, + d = mlog(n, + a) (18b)
from which
s, = 29.77 p.s.i.
04343 m
= -
@, = tan n o+ a (34)
from which

g, = 14° 05'
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c, = s, - n, tan §, (35)

from which

c, = 17.8 p.s.i.

Consequently, for Mohr circle (2) in Figure 26
V, = 85.9 p.s.i.
U = 2449 p.s.i.
n, = 47.7 p.s.i.
s, = 29.77 p.si.
c, = 17.8 p.ssi.
g, = 14° 5'

Analysis of Mohr Circle (3), Figure 14, General Case

The value of ng at the point of tangency F between the curved Mohr envelope
and Mohr circle (3), Figure 14, where ny represents the normal stress on the
plane of failure when the principal stresses are V,, and Ly = KU, where
K = 1.225 as an arbitrarily specified value in this example, and U is the uncon-
fined compressive strength, can be calculated from equation (38),

(ng + a) {m log (ny + a) - d}z - (ny - Ly) /0.8686 m {m log (ny + a) - d}
+(ng +a) (ng - Lg)/ = 0 (38)

Values for the constants d, m, and a have already been determined, L; = KU,
both K and U being known, and the value for n; can be found graphically by plot-
ting equation (38) against trial values for n,, until a value for ny is determined
that satisfies this equation. The method is illustrated in Figure 17(c), which
was employed to evaluate n,, and a smiliar graph indicates that the required
value for ng = 55.36 p.s.i.

By substituting the values determined for d, m, a, and n4 in equations (36)
or (37), and remembering that L, = KU, the value of V,, the major principal
stress, Figure 14, can be calculated.

v, = {m log (n, + a) - 4z

ng . (36)
ng - Ly

from which

V, = 94.68 p.s.i.

From the values for d, m, a, and n, that have been established, values for
S4, @, and ¢, can be easily calculated by means of equations (18¢), (39), and
(40).

sy +d = mlog(n, + a) (18¢)
from which

sg = 31.58 p.s.i.
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g, = tan: 24343 m (39)
3
from which
g, = 12° 28’
€3 = Sy ~ Ny tan @ (40)
from which

¢y T 19.34 ps.i.
Consequently, for Mohr circle (3) in Figure 14,

V, = 94.68 p.s.i.

L, = KU = (1.225)(24.49) = 30 p.s.i.
n; = 55.36 p.s.i.

sy = 31.58 p.s.i.

c, = 19.34 p.s.i.

g, = 12° 28’

To Calculate Points On the Stability Curve
between the Edge and the Centre of the Contact Area

Suppose that the stability V is to be calculated at a distance of one-half inch
along the transverse axis from the edge toward the centre of the contact area,
e.g. Figure 15(a).

The following assumptions are made, and are illustrated in Figure 15.

(a)f+g=105

(b) pavement thickness = 3 inches

(c) the curved Mohr envelope for the paving mixture is as illustrated in
Figure 15(b)

(d) the tire pressure curve has the shape shown in 15(a), and rises from
the edge of the contact area at the rate of 60 p.s.i. per inch of horizontal
distance.

The value of Ly at a distance one-half inch inward from the edge of the con-
tact area can be calculated by means of equation (7).

. av’
Lgr = T f + ¢ (M
where
d = distance inward from the edge of the contact area = 0.5 inch
t = thickness of pavement = 3 inches
f+g=05
V' = average tire pressure acting over the pver-half inch of distance
inward from the edge of the contact area = :—3-9——?:—0 = 15 p.s.i.

Substituting these values in equation N gives,
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_ (0.5) (15) (0.5) _

Lr )

1.25 p.s.i.

From Figure 14, or from the Appendix, the laterai support provided by the
pavement adjacent to the contact area = Lg= 24 .49 p.s.i.

The total lateral support L acting at a point one-half inch inward from the
edge of the contact area is givenby L = Lg + Ly = 24.49 +1.25 = 25.74 p.s.i.

Any value of lateral support L can be expressed as KU, where U = the un-
confined compressive strength of the paving mixture = 24 .49 p.s.i., Figure

15(b). Therefore, in this case K = = = == = 1.05.

The pavement stability V at the point one-half inch inward from the edge
of the contact area can now be calculated by the procedure outlined in the
preceding section of the Appendix, "Analysis of Mohr Circle (3), Figure 14,
General Case." Remembering that Ly = KU = 25.74 p.s.i. in this case, it is
readily determined that V, = 87.9 p.s.i. Therefore, the stability of the pave-
ment at 0.5 inch inward from the edge of the contact area, for the conditions
outlined, is given by V= 87.9 p.s.i.

Stability values can be similarly calculated for the pavement for points at
other distances inward from the edge of the contact area. The smooth curve
drawn through the plot of these data constitutes the stability curve of Figure
15(a), which indicates pavement stability at various distances inward from the
edge of the loaded area. For the particular conditions on which Figure 15 is
based, the stability curve is just tangent to the tire pressure curve at a dis-
tance of 1.7 inches inward from the edge of the contact area, Figure 15(a). At
this point of tangency, both tire pressure and pavement stability are 109.6 p.s.i.

It should be apparent that for a more stable paving mixture, or for a higher
value for f + g, the frictional resistance between pavement and tire and between
pavement and base, or for a smaller pavement thickness, etc., the stability
curve would lie above its present position; that is, the stability of the pavement
would exceed the tire pressure at all points on the contact area.
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Discussion

PROFESSOR B. A. VALLERGA: The paper just pre-
sented is the fullest treatment of the subject I have heard. It is
a mathematical approach to evaluating the amount of load a sur-
face course can sustain from a consideration of the value of the
angle of friction, fJ, and the intercept on the Mohr diagram, C,
and a number of other factors. I have admired Dr. McLeod's
approach very much, and it has merit.

Last year, in a discussion I questioned the curvature of the
Mohr envelope, and I still do. I believe that eventually we will
find out whether curved Mohr envelopes for asphaltic mixtures
do exist. However, Dr. McLeod's approach takes care of both
straight and curved envelopes so the matter is not critical.

Dr. McLeod, there is one point I would like to raise. You
have referred to this method as a method of designing bitumin-
ous mixtures. Earlier today I gave my definition of mix design.
Your method, as presented, would not satisfy this definition. It
seems to me that by your method one of two things would be
done; first, a mix could be designed and then tested to deter-
mine the values of § and C. Then, by your method one could de-
termine how much load a pavement made of this material should
be able to sustain. Secondly, the reverse could be done; knowing
the load to which the pavement would be subjected, one could de-
termine the minimum values of ¢ and C which the asphaltic pave-
ment should have.

Now I believe this is correct, however, I do not consider that
this constitutes the actual design of a bituminous mixture. Could
you tell us what you mean when you say this is a method for de-
signing bituminous mixtures?

DR. McLEOD: That is a very good question, Professor
Vallerga. I am very glad you brought it up. Possibly rather
than "design,"” the paper should specifically refer to "stability
of bituminous pavements." In some of the earlier papers it was
emphasized that first of all, a bituminous mixture should be
properly designed on every other basis that should be taken into
consideration, including, asphalt content, workability, gradation,
durability, and so on. When satisfied that it meets design re-
quirements in every other respect, this paper then provides a
means for establishing whether or not the paving mixture will
have the stability required to carry the anticipated load.

MR. JOHN GRIFFITH: Dr.McLeod, your analysis is predi-
cated on the use of triaxial test data which involve only a single
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application of load to the specimen to derive the information
which you seek. Now, I think we realize that when failures oc-
cur in bituminous mats they generally do so under many thou-
sands of repetitions of load. There are some indications from
repetitive triaxial testing on soils entirely different results will
be observed.

Might it not be well to consider some repetitive type of test-
ing in conjunction with this type of analysis?

DR. McLEOD: That is also a very pertinent point, Mr.
Griffith. I believe that a procedure could be established for the
triaxial test itself that would provide for repetitive instead of
single loadings, thereby satisfying the requirement you have
mentioned.

MR. HECTOR M. CALDERON: I have several questions.

One is this: The author has stated that the unconfined com-
pressive test is a measure of the passive resistance of the pave-
ment to displacement. I question that because the unconfined
compressive resistance of a bituminous mixture or pavement is
measured vertically; it is an active pressure, and if the pave-
ment is a homogeneous material, you could probably use that
value as a first approximation. However, I think that most pave-
ments are not isotropic; their particles are oriented more or
less horizontally, so you should find resistance in a horizontal
direction will be quite different from vertical resistance, as
measured by the unconfined compression test.

In the second place, I don't believe that the shear resistance
on vertical planes transverse to the loaded lower area are taken
into account in Dr. McLeod's theory. That is, he analyzes the
problem from a two-dimensional point of view and, actually, in
order that the pavement may be pushed out laterally, it has to
overcome the resistance of the rest of the pavement in that same
direction, that is, on vertical planes transverse to the loaded
area.

I would appreciate your answer on those points.

DR. McLEOD: In answer to the suggestion that the lateral
pressure might not be equal to the unconfined compressive
strength as ordinarily measured, we have recognized that fact
and have pointed it out in some of our previous papers. It was
not mentioned during the presentation of this paper because of
the limitation of time. In these earlier papers we have suggested
that the unconfined compressive strength should be multiplied by
a factor K to take into account certain items that we realize we
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have left out. At the present time, precise measured values for
K are not available, However we feel that if K were assumed
equal to Unity, it would probably be on the conservative side in-
sofar as the ultimate strength of the pavement is concerned.

MR. CALDERON: Would that value of K take into account
the fact that the shearing resistance might be different on ver-
tical and horizontal planes of the pavement.

DR. McLEOD: We have suggested it might do so, but that
to get the answer you are after it might be necessary to use the
type of triaxial test Professor Haefeli uses in Switzerland,
where the lateral pressure becomes the principal stress, and
the vertical load is the minor stress.

The comments made by Mr. Calderon are greatly appreciated
because they touch on important aspects of any rational approach
to the design of bituminous pavements.



